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describes the effect of the slot discontinuity, i.e., the PI

coupling of the eigenmodes of the undisturbed structure.

The eigenvalues, i.e., the resonance frequencies of the 131

resonator are found if the eigenvalue equation

det(~. >+~)=0 (A.13) [4]

is satisfied, that means if the zeros of the system determi-

nant are found. [5]
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Propagation Properties of a Planar Dielectric
Waveguide with Periodic Metallic Strips

KAZUHIKO OGUSU, MEMBER, IEEE

Abstract-.4 dielectric waveguide with periodic metattic strips suitable

for mifthneter-wave and subarfffimeter-wave integrated circuits is ansfyzed

by a rfgoroas formulation. The accuracy of the solution of our snatysfa can

be systemsticafty improved by brcmasing the size of the matrix associated

with the eigenvafrre equation. Stopband properties are rnrmericafly pre-

sented as a function of the spacing and width of metaffic strips aad

dielectric profiie. It is found that there is a difference in the stopbsnd

properties of TM aad TE modes. Experimental results for the band reject

fiJter are alan presented to verify the vatidity of oar analysis.

I. INTRODUCTION

D IELECTRIC periodic structures have been applied

to many devices in integrated optics, such as filters

[1], [2], input and output beam couplers [3], [4], and

distributed feedback lasers [5]. At millimeter and submilli-

meter wavelengths too, they can be applied to devices

similar to those in integrated optics. Although a few

investigations have been reported [6], periodic structures

have not yet been widely used in millimeter-wave and

submillimeter-wave integrated circuits.

The purpose of the present paper is to determine the

propagation properties of a planar dielectric waveguide

with periodic metallic strips as shown in Fig. 1. This

periodic structure can be easily and accurately fabricated

by existing printed-circuit techniques for microstrip mi-

crowave integrated circuits and is suitable for millimeter-

wave and submillimeter-wave integrated circuits. The
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metal

Fig. 1. Geometry of the dielectric wavegnide with periodic metaflic
strips. Regions 1, 2, and 3 correspond to a cover (air), guiding film,
and substrate, respectively.

propagation properties are characterized by the film thick-

ness, width and spacing of metallic strips, dielectric pro-

file, and operating frequency. We restrict the discussion to

the stopband phenomenon applicable to band reject filters,

since the scattering properties of similar periodic struc-

tures with metallic strips are discussed in several articles

and texts [7]– [9]. The theoretical analysis is essentially the

same as the spectral domain approach [10], [11], which is a

powerful tool for the analysis of striplines.

The width and center frequency of the stopband and

attenuation constant at the center frequency are numeri-

cally presented as a function of the width and spacing of

the metallic strips and dielectric profile. It is found that

there is a difference in the stopband properties of TM and

0018-9480/81 /0100-0016$00.75 @1981 IEEE



OGUSU: PROPAGATION PROPERTIES OF PLANAR DIEL.ECTRIC WAVEGUIDE

TE modes. The results of an experiment confirming the

theoretical results are also presented.

II. FORMULATION OF THE PROBLEM

Fig. 1 shows the geometry of the planar dielectric

waveguide with periodic metallic strips and the coordinate

system for the present analysis. Regions 1, 2, and 3

correspond to a cover, guiding film, and substrate, respec-

tively. In our case, the cover material is air. The metallic

strips are placed on the top of the film at periodic inter-

vals L. We assume that the metal and dielectric materials

are lossless. Since both TM and TE modes can be analyzed

in a similar manner, we will consider only the TM modes

with no variation in they direction.

The TM modes have three nonvanishing field compo-

nents; HY, EX, and E=. The EX and E= components are

represented in terms of the HY component as

“ aHy
EX=~—

~c,co az

–j 3HY
Ez=— —

~creo ax

(1)

(2)

where ●. is the relative permittivity. According to Floquet’s

theorem, electromagnetic fields in the periodic structure

can be represented in terms of space harmonics whose

phase constants in the z direction are

&=/3+$n, n=O, *l, *2...Y (3)

where ~ is the phase constant of the dominant space

harmonic. The HY component in the air, film, and sub-

strate is given by
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substrate, respectively. These parameters are related

through the wave equation as

i7; =&2—k2 (5)

U2 =c,=k= —~;n (6)

W2 =& –c.Bk=n (7)

where k is the free space wavenumber and C,2 and 6,3 are

relative permittivities in the fihn and substrate, respec-

tively.

The ~~ow~ phase constant ~ and expansion coeffi-

cients An, Bn, C., and fin are determined by matching the

tangential electric and magnetic fields at x = a and x = – a.

The boundary conditions at the two interfaces are given

by

HY2(–a, z)= HY3(–a, z) (8)

Ez2(–a, z)= Ez3(–a, z) (9)

HY2(a, z)– HY1(a, z)

{
=Jz(z)= :(z);

on metallic strips

, otherwise

(lo)

Ez2(a, z)= Ezl(a, z) (ha)

Ez2(a, z)= Ezl(a, z)=0, on metallic strips (llb)

where the subscripts 1, 2, and 3 correspond to the cover,

film, and substrate, respectively. l=(z) is the unknown

surface current density in the z direction on the metallic

strip. From (8)–(1 la), expansion coefficients A“n, ~n, ~n,

and fi. are represented in terms of space harmonics of the

surface current density ~z(z) as

( )in= ~ . ~ sin2u.a– A . ~ cos2una tin (12a)
rn rn

( )

~n = cosuna+ % . ~ sinuna tin
Er3 ~

(12b)

( )
C.= –sinu.a+~. ~cosuna fin (12C)

rn

(12d)

(CO

I~..~
w

L~ (&cosunx+dnsinunx) e--@nz, (4)HY(x, z)= ~=_@

—a<x<a

where A-n, ~,, en, and ~~ are unknown expansion coeffi-

cients and i?., jun, and w. are transverse propagation

constants of the nth space harmonic in the air, film, and

where

Note that expansion coefficients ~., ~., ~., and E“ are as

yet unknown, since the surface current density ~(z) is

unknown, and Ezl(a, z) and Ez2(a, z) are not zero on the
metallic strips, though they are continuous.

Before considering the remaining condition (1 lb), we

expand the unknown J=(z) in terms of known basis func-

tions J=,~(z) as

~(z)= : %L, m(z) (14)
~=1
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where am is the unknown constant. The basis function +, ~(z) must be chosen so that it may be nonzero only on
the metallic strips.

Now, we derive the eigenvalue equation by the imposition of the condition (1 lb). From (2), (4), (12a), (12d), and

(14), Ezl(a, z) is given by

where ~, ~. and ~~ are amplitude coefficients of the n th space harmonic of J=,~(z) and Ezl(a, z ), respectively. We

multiply En by ~,,. for different values of s and sum over all n. This yields the following matrix equation:

,,m,n~,,n}am=~~~Ezl(a, z)~~=(z)dz=O,“J S=1,2,. ... M.

The above integration over a unit cell becomes zero, because Ezl(a, z) is zero on the metallic strip and ~,,(z) zero

otherwise. A nontrivial solution for am (m= 1,2,. . . , M) exists only if the following determinantal equation holds:

G,, G,2 . . . G,M

G21 G22 . . . G2M

IGM, GM, . . . GMM

=0 (17)

where

( .n sin2u.a — — .4 cos2u~a—.—
)

‘i’=”s~fin(l+i”i):sz”na+ (i:+”i)sinzunaz’’’nz””””

(18)

This is the eigenvalue equation that determines the phase constant P of the dominant space harmonic. On the other

hand, the corresponding element GiJ for TE modes is

(
n sin2u~a+cos2u~a

Gij = ~
)

~=-~w~{(l+~~0s2u~a+(~ -~)sin2u~a)~’’”%i’”

(19)

where ~, i,. is the amplitude coefficient of the n th space harmonic of the basis function JY,i(z) for representing the
unknown surface current JY(z) in they direction. The above derivation process for the eigenvalue equation is generally

called Galerkin’s method. Therefore, the eigenvalue equation (17) becomes stationary for the phase constant /3.
On the other hand, the dual formulation can be also obtained by expanding the field at the interface x = a in terms of

basis functions. The spectral domain approach in [11] for the microstrip and slot line is applicable to the formulation.

Whether it is advantageous to use the current density or field depends upon the normalized width 8/L of the metallic

strips. The comparison of the two approaches has not been made at the present stage.

III. NUMERICAL AND EXPERIMENTM- RESmTS

The dispersion relation is given by seeking the root of the eigenvalue equation (17) numerically. The accuracy of the

solution of our analysis is influenced by the choice of basis functions. If the exact current distribution on the metallic

strip is given, the solution becomes exact. In the present paper, the following forms have been chosen for ~, ~(z)
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Fig. 2,

n -
!kL.2 W- Re[flL)’.,x,,’kL. RO(13L}

/
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0
0 2 nb 6 2n

Re(13L)

Dispersion diagram for the lowest TM mode (M= 2).
0.5, c$/L= 0.25, C,z =2,5, 6,3= 1.0.

2a/L =

TABLE I
~NVSRGSNCJ3OF (kL)=, Arc, mm –Im(/3L)c AS
mm NUMBERM OFBASmFUNCTIONSINCREASES.2a/L = 0.5,

8/L =0.25, C,z = 2.5, C,3= 1.0

TE mode TM mode

M
(kL)c

● (kL)
— -lm(IkL)c (kL)c A(kL)
(kL)e

— -Im(flL)c
(kL~

1 2.7k75 0.1457 0.3689 2.8276 0.01130 0.02172

2 2,7500 0.1473 0.3758 2.8261 0,01233 0.02373

3 2.7500 0.1478 0.3779 2.8256 0.01268 0.024’>

4 2.7511 0. M81 0.3790 2.82S4 0.01286 0.02479

and ~, Jz)

[0, 8 <z < L for TM modes

(20)

[0, 8< z < L for TE modes

(21)

where 8 is the width of the metallic strip. Although the

current in they direction tends to concentrate at the edges

of the metallic strip, this effect is approximately taken into

account.

Fig. 2 shows the typical dispersion diagram for the

lowest TM mode. The enlarged dispersion diagram at the

vicinity of a stopband is also shown in the inset in Fig. 2.

As expected from the analogy of Bragg diffraction of

X-rays in crystals, the stopband occurs at Re(&L) = ~.

For frequencies in this region, ~ is complex. This stop-

band results from the coupling between the dominant

space harmonic (n= O) of forward waves and the domi-

nant space harmonic (n= – 1) of backward waves. This

phenomenon can be applied to band reject filters. In a

forbidden region above the two lines kL = Re(pL)/~

and kL = 217– Re (~L)/ ~, the surface wave couples

to a leaky wave that radiates outgoing beams. Here,

consideration is given to the guiding rather than scattering

properties.

Before presenting detailed guiding properties, we check

the convergence of the solution of our analysis. Table I

shows the convergence of the normalized center frequency

(kL)c and width Arc of the stopband, and the

normalized attenuation constant – Im (flL)c at the center

frequency for different numbers of basis functions M. The

normalized center, frequency and width of the stopband

are defined by

(kL)c=[(kL)w+(kL)l]/, (22)

- = [(kL)u - (kL)l]/(kL)c (23)
c

where (kL)u and (kL)l are upper and lower stopband

frequencies, respectively. It is found that even the ap-
proximation with M= 1 provides good results. In the

following numerical results, M= 2 will be used.

Fig. 3 shows the normalized center frequency and width

of the stopband, and the attenuation constant at the

center frequency as a function of the width of the metallic

strip. In Fig. 3(b), the results with 2a/L= 1/3 are not
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Fig. 3. Normalized center frequency and width of tbe stopban~ and

tbe normalized attenuation constant at U2e center frequency as a
function of tbe width of tie metallic strip. (a) TM mode. (b) TE mode.
C,z =2.5, C,3= 1.0.

shown for values of 8/L> 0.15, since the upper stopband

frequency enters the forbidden region for that range. It is

found that the width of the stopband and attenuation

constant at the center frequency increase with the width

of the metallic strip for both TM and TE modes. The

center frequency of the stopband for the TM modes

decreases with increasing i3/L in contrast to the case of

TE modes. It is also found that the stopband properties

for TE modes are not much influenced by the width of the

strip, and the width of the stopband and the attenuation

constant for TE modes are usually greater than those for

TM modes. Moreover, there is a difference in the depen-

dence of the stopband properties on 2a/L between TM

TM mode
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Fig. 4, Normalized center frequency and width of tbe stopban~ and
the normalised attenuation constant at the center frequency as a
function of the relative permittivity .s,3 of the substrate.

Frequency (G HZ)

Fig. 5. Insertion loss for the TM mode of the band reject filter with tbe
number of metallic strips= 40, 2a=8 mm, 8=6 mm, L= 14 mm,
6,2 =2.25, and C,3= 1.0.

and TE modes. The difference in the stopband properties

of TM and TE modes has an important meaning for

designing band reject filters.

Fig. 4 shows the normalized center frequency and width

of the stopband, and the normalized attenuation constant

at the center frequency as a function of relative permittiv-

ity c,~ of the substrate. The width of the stopband be-

comes small as C.J approaches C,2, because the guiding

region (~ > Re (/7//c) > ~ ) becomes small with de-

creasing Crz – cr~. In our example, the upper stopband

frequency enters the forbidden region for values of e,~ >

2.11.

In order to verify the validity of our analysis, experi-

ments have been carried out at X-band. Band reject filters

were fabricated by cementing metallic strips (aluminum)

on the top of a polypropylene sheet (~, = 2.25). The surface

wave was excited from a rectangular metallic waveguide

using the flared horn. Fig. 5 shows the measured insertion

loss of the band reject filter with the number of metallic
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strips= 40, 2a=8 mm, 8=6 mm, and L=14 mm. The

width of the dielectric waveguide was 25 cm. The insertion

loss of the dielectric waveguide without metallic strips was

about 5 dB over a range of 8.5 to 10.5 GHz. The insertion

loss includes the launching losses at the transmitting and

receiving horns. The dielectric loss for the plane wave in

the infinite polypropylene (tan8= 5 x 10’4 [12]) is 0.58 –

0.72 dB/m over a range of measured frequencies, which

approximates to the dielectric loss of the actual waveguide

for the great field confinement. Therefore, most of the

insertion loss is the launching loss. The transverse propa-

gation constant in the y direction kY e r/width =

r/25[cm-’ ] is considerably smaller than the wavenumber

in the polypropylene ~ k = 3 T/A. Therefore, the

fabricated filter approximates to the planar structure

shown in Fig. 1. The calculated upper and lower stopband

frequencies are 9.33 and 9.66 GHz, respectively, and the

insertion loss at the center frequency of 9.50 GHz is 23.8

dB. The frequency where the dispersion curve enters into

the forbidden region is 9.99 GHz. The increase of the

insertion loss above the upper stopband frequency results

from the coupling between the surface wave and the leaky

wave. These experimental results agree with calculated

values.

IV. CONCLUSION

A dielectric waveguide with periodic metallic strips

suitable for millimeter-wave and submillimeter-wave in-

tegrated circuits has been investigated theoretically and

experimentally. Stopband properties are numerically pre-

sented as a function of the spacing and width of metallic

strips and dielectric profile. It is found that there is a

difference in the stopband properties of TM and TE

modes. For the fabrication of band reject filters, this

difference should be taken into account. Experimental

results for the band reject filter agree with theoretical

values. The analysis presented in this paper can be applied

to other types of periodic structures with metallic strips.
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