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describes the effect of the slot discontinuity, i.e., the
coupling of the eigenmodes of the undisturbed structure.
The eigenvalues, i.e., the resonance frequencies of the
resonator are found if the eigenvalue equation

det(S-P+§)=0 (A.13)

is satisfied, that means if the zeros of the system determi-
nant are found.
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Propagation Properties of a Planar Dielectric
Waveguide with Periodic Metallic Strips

KAZUHIKO OGUSU, MEMBER, IEEE

Abstract— A dielectric waveguide with periodic metallic strips suitable
for millimeter-wave and submillimeter-wave integrated circuits is analyzed
by a rigorous formulation. The accuracy of the solution of our analysis can
be systematically improved by increasing the size of the matrix associated
with the eigenvalue equation. Stopband properties are numerically pre-
sented as a function of the spacing and width of metallic strips and

- dielectric profile. It is found that there is a difference in the stopband
properties of TM and TE modes. Experimental results for the band reject
filter are also presented to verify the validity of our analysis.

I. INTRODUCTION

IELECTRIC periodic structures have been applied
to many devices in integrated optics, such as filters
[1], [2}, input and output beam couplers [3], [4], and
distributed feedback lasers [5]. At millimeter and submilli-
meter wavelengths too, they can be applied to devices
similar to those in integrated optics. Although a few
investigations have been reported [6], periodic structures
have not yet been widely used in millimeter-wave and
submillimeter-wave integrated circuits. v
The purpose of the present paper is to determine the
propagation properties of a planar dielectric waveguide
with periodic metallic strips as shown in Fig. 1. This
periodic structure can be easily and accurately fabricated
by existing printed-circuit techniques for microstrip mi-
crowave integrated circuits and is suitable for millimeter-
wave and submillimeter-wave integrated circuits. The

Manuscript received December 6, 1979; revised August 27, 1980.
The author is with the Faculty of Engineering, Shizuoka University,
Hamamatsu, 432 Japan.

77

?.

a

\

3
Fig. 1. Geometry of the dielectric waveguide with periodic metallic

strips. Regions 1, 2, and 3 correspond to a cover (air), guiding film,
and substrate, respectively.

propagation properties are characterized by the film thick-
ness, width and spacing of metallic strips, dielectric pro-
file, and operating frequency. We restrict the discussion to
the stopband phenomenon applicable to band reject filters,
since the scattering properties. of similar periodic struc-
tures with metallic strips are discussed in several articles
and texts [7]-[9]. The theoretical analysis is essentially the
same as the spectral domain approach [10], [11], which is a
powerful tool for the analysis of striplines.

The width and center frequency of the stopband and
attenuation constant at the center frequency are numeri-
cally presented as a function of the width and spacing of
the metallic strips and dielectric profile. It is found that
there is a difference in the stopband properties of TM and
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TE modes. The results of an experiment confirming the
theoretical results are also presented.

IL.

Fig. 1 shows the geometry of the planar dielectric
waveguide with periodic metallic strips and the coordinate
system for the present analysis. Regions 1, 2, and 3
correspond to a cover, guiding film, and substrate, respec-
tively. In our case, the cover material is air. The metallic
strips are placed on the top of the film at periodic inter-
vals L. We assume that the metal and dielectric materials
are lossless. Since both TM and TE modes can be analyzed
in a similar manner, we will consider only the TM modes
with no variation in the y direction.

The TM modes have three nonvanishing field compo-
nents; H,, E,, and E,. The E, and E, components are
represented in terms of the H, component as

FORMULATION OF THE PROBLEM

i OH
=l (1)
wee, 0z
—j OH;
_ J ¥
7 weg, Ox 2)

where ¢, is the relative permittivity. According to Floquet’s
theorem, electromagnetic fields in the periodic structure
can be represented in terms of space harmonics whose
phase constants in the z direction are

B.=B+ ZTWn, 3)

where B is the phase constant of the dominant space
harmonic. The H, component in the air, film, and sub-
strate is given by

n=0,+t1,%2...
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substrate, respectively. These parameters are related
through the wave equation as

02 =p2 - k? 5)

uy =¢,,k* =B} (6

wl=B%— €3k 2 (7

where k is the free space wavenumber and ¢,, and ¢,, are
relative permittivities in the film and substrate, respec-
tively.

The unknown phase constant 8 and expansion coeffi-
cients 4, , and D, are determined by matching the
tangential electnc and magnetic fields at x=a and x= —a.
The boundary conditions at the two interfaces are given
by

HyZ(_a, Z)=Hy3(—a, Z) (8)
E,(—a,z)=E(-a,z) )
HyZ(a, z)—Hyl(a’ Z)
=J(z)= { I(z), on metallic strips
0, otherwise
(10)
E.(a,2)=E,(a,z) (11a)
E,(a,z)=E,(a,z)=0, on metallic strips ~ (11b)

where the subscripts 1, 2, and 3 correspond to the cover,
film, and substrate, respectively. ,(z) is the unknown
surface current density in the z direction on the metallic
strip. From (8)—(11a), expansion coefficients A B C
and D are represented in terms of space harmomcs of the
surface current density J,(z) as

~ 1 u, . 1 w, ~
A4,= - —sin2u,a— — - = cos2u,a | D, (12a)
€2 n €3 W,
~ €0r W, . ~
B,=|cosu,a+—"—=-—"sinu,a|D, (12b)
€3 U,
~ € W, ~
C,,=(—sinuna+ﬁ-——’1cosu,,a)Dn (12¢)
€3 U,
~ 1 -
D, = n " Jn (129)
W,
(1 +— —,#)cosZuna+ ( 2. 5 i’l)sinZuna
€3 Wy €3 U, €2 Wy,
[ where
2 Ane —w,,(x—a)e —jﬂnz, as<x - 1 , z
e b Jon=T J(z)efﬁn dz_—f 1(z)e’dz.  (13)

Ms

(B,cosu,x+C,sinu,x)e 7, ()

H/(x,z)= —
—a<x<a
o0
2 Dnew"(x+“)e —IBaz x< —a
n=—oo
where A4,, B,, C,, and D, are unknown expansion coeffi-

cients and W,, ju,, and w, are transverse propagation
constants of the nth space harmonic in the air, film, and

Note that expansion coefficients A,, B,, C,, and D, are as
yet unknown, since the surface current density J(z) is
unknown, and E,,(a, z) and E,,(a, z) are not zero on the
metallic strips, though they are continuous.

Before considering the remaining condition (11b), we
expand the unknown J,(z) in terms of known basis func-

tions J, ,(z) as M

J(2)= 2 apnd; (2)

m=1

(14)
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where a,, is the unknown constant. The basis function J, ,(z) must be chosen so that it may be nonzero only on
the metallic strips.

Now, we derive the eigenvalue equation by the imposition of the condition (11b). From (2), (4), (12a), (12d), and
(14), E, (a, z) is given by

o

M
u, 1 w, -
(L — sin2u,a— — - —* cos2u a) > A, mon

€2 Wn €3 wn

Ezl(a’z)_—_ 2 ﬁ Wn 1 m=1 e Bz = 2 E e ~/Bnz (15)
i W, _
= TR0 (1+—1— 1)cos2u a+(€’2-—1—-—-#)sin2una nETe
€3 W, €3 U €3 W,
where J, , , and E are amplitude coefficients of the nth space harmonic of J, ,(z) and E,(a, z), respectively. We

multlply E by Jz*s . for different values of s and sum over all n. This yields the followmg matrix equation:

1 wu, . 1 w
- sin2u,a— — - <= cos2u,a
€, W

n r3 n

M
n= 2

) .
2 ;j*‘@ 1
m=1|n=—o0 “€0 (1+—1— —)cos2u a+(€r2‘ﬁ——'y§)5m2una (16)

€3 W, €3 U, €2 W,

PR

NS*l
E

- - 1 L
om o) tm = [ Eala, )2 (2)dz=0,  s=12,- M

The above integration over a unit cell becomes zero, because E,(a, z) is zero on the metallic strip and J, (z) zero

otherwise. A nontrivial solution for a,, (m=1,2,-- -, M) exists only if the following determinantal equation holds
Gl 1 G 12 G 1M
G21 G22 G2M =0 (17)
GM 1 GM 2 GMM

where

W,
(L ..1.‘;.. 1n2u a——i T”COSZ“ d)
hd . €9 W, € W,
G, = > W L jondein (18)
n=-o0

n

1 W €, W 1 u .

(1+ cos2u,a+ 2, r___ . sin2u,a
€,3 wn €r3 un €2 wn

This is the eigenvalue equation that determines the phase constant 8 of the dominant space harmonic. On the other
hand, the corresponding element G,; for TE modes is

W, .
(—” s1n2u,,a+cos2u,,a)
n -~ ~

GU= N n Jy,j,n‘ly*,i,n (19)
n=—o0 W W, u
w"{(1+—")cos2u a+(—— ——)sm2u a}
W, u

n n wn

where J J,,i,» is the amplitude coefficient of the nth space harmonic of the basis function J, J, /(z) for representing the
unknown surface current J,(z) in the y direction. The above derivation process for the eigenvalue equation is generally
called Galerkin’s method. Therefore the eigenvalue equation (17) becomes stationary for the phase constant .

On the other hand, the dual formulation can be also obtained by expanding the field at the interface x =q in terms of
basis functions. The spectral domain approach in [11] for the microstrip and slot line is applicable to the formulation.
Whether it is advantageous to use the current density or field depends upon the normalized width 8/L of the metallic
strips. The comparison of the two approaches has not been made at the present stage.

III. NUMERICAL AND EXPERIMENTAL RESULTS

The dispersion relation is given by seeking the root of the eigenvalue equation (17) numerically. The accuracy of the
solution of our analysis is influenced by the choice of basis functions. If the exact current distribution on the metallic
strip is given, the solution becomes exact. In the present paper, the following forms have been chosen for J,.m(2)
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Fig. 2. Dispersion diagram for the lowest TM mode (M=2). 24/L=
0.5,8/L=0.25,¢€,5=25,¢,3=10.

TABLE 1
CONVERGENCE OF (kL),, A(kL)/(kL)_, AND —Im(BL)_ As
THE NUMBER M OF Basis FUNCTIONS INCREASES. 2a/L=0.5,
8/L=025,¢,,=25,¢,3=10

TE mode T™ mode
M a(kL) a(kl)
(kL) o, -im(BL) | (kL) TR -Im(BL),
1 2.7475 0.1457 0.3689 2.8276 0.01130 0.02172
2 2.7500 0.1473 0.3758 2.8261 0.01233 0.02373
3 2.7508 0.1478 0.3779 2.8256 0.01268 0.02443
4 2.7511 0.1481 0.3790 2.8254 0.01286 0.02479
and J, ,.(z) forbidden region above the two lines kL=Re(BL)/ \/eTs
. 2m-1)7 and kL=27—Re(BL)/Ve,; , the surface wave couples
J, (z)=]sin 3 z, 0<z<dfor TM modes to a leaky wave that radiates outgoing beams. Here,
0, 8<z<L for TM modes cons1de‘rat10n is given to the guiding rather than scattering
properties.
(20) Before presenting detailed guiding properties, we check
2Am—1)ax the convergence of the solution of our analysis. Table I
J, (2)={ 08— 2 0<z<8for TE modes shows the convergence of the normalized center frequency
0, 8<z<L for TE modes (kL), and width A(kL)/(kL), of the stopband, and the
normalized attenuation constant —Im(BL), at the center
@y frequency for different numbers of basis functions M. The

where § is the width of the metallic strip. Although the
current in the y direction tends to concentrate at the edges
of the metallic strip, this effect is approximately taken into
account.

Fig. 2 shows the typical dispersion diagram for the
lowest TM mode. The enlarged dispersion diagram at the
vicinity of a stopband is also shown in the inset in Fig. 2.
As expected from the analogy of Bragg diffraction of
X-rays in crystals, the stopband occurs at Re(BL)=w.
For frequencies in this region, B8 is complex. This stop-
band results from the coupling between the dominant
space harmonic (n=0) of forward waves and the domi-
nant space harmonic (n= —1) of backward waves. This
phenomenon can be applied to band reject filters. In a

normalized center frequency and width of the stopband
are defined by

(kL)c=[(kL)u+(kL)l]/2 (22)
A(KL) )
D). = LOL)u= (L)) / kL), (23)

where (kL), and (kL), are upper and lower stopband
frequencies, respectively. It is found that even the ap-
proximation with M=1 provides good results. In the
following numerical results, M =2 will be used.

Fig. 3 shows the normalized center frequency and width
of the stopband, and the attenuation constant at the
center frequency as a function of the width of the metallic
strip. In Fig. 3(b), the results with 2a/L=1/3 are not



20 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-29, NO. 1, JANUARY 1981

10

2T.' =‘lz'"”G) T™M mode

e A
wrocie " A

126
124
-~
4 '}
x
4122
alkl)
, tkL)e :
or —— -ImiBL)
120
------ (kL)
-4
1 . 1 1
01 0 15 20 8
er:'l

Fig. 4. Normalized center frequency and width of the stopband, and
the normalized attenuation constant at the center frequency as a
function of the relative permittivity ¢,; of the substrate.
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Fig. 3. Normalized center frequency and width of the stopband, and
the normalized attenuation constant at the center frequency as a
function of the width of the metallic strip. (a) TM mode. (b) TE mode.
€,,=25,¢€,,=10.

shown for values of §/L>0.15, since the upper stopband
frequency enters the forbidden region for that range. It is
found that the width of the stopband and attenuation
constant at the center frequency increase with the width
of the metallic strip for both TM and TE modes. The
center frequency of the stopband for the TM modes
decreases with increasing /L in contrast to the case of
TE modes. It is also found that the stopband properties
for TE modes are not much influenced by the width of the
strip, and the width of the stopband and the attenuation
constant for TE modes are usually greater than those for
TM modes. Moreover, there is a difference in the depen-
dence of the stopband properties on 2a/L between TM

a ekl
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Fig. 5. Insertion loss for the TM mode of the band reject filter with the
number of metallic strips=40, 2a=8 mm, §=6 mm, L=14 mm,
€, =2.25, and €,3= 1.0.

and TE modes. The difference in the stopband properties
of TM and TE modes has an important meaning for
designing band reject filters.

Fig. 4 shows the normalized center frequency and width
of the stopband, and the normalized attenuation constant
at the center frequency as a function of relative permittiv-
ity €,5 of the substrate. The width of the stopband be-
comes small as €,; approaches ¢,,, because the guiding
region (Ve,, >Re(B/k)> Ve, ) becomes small with de-
creasing €,, —€,5. In our example, the upper stopband
frequency enters the forbidden region for values of ¢,; >
2.11.

In order to verify the validity of our analysis, experi-
ments have been carried out at X-band. Band reject filters
were fabricated by cementing metallic strips (aluminum)
on the top of a polypropylene sheet (e, =2.25). The surface
wave was excited from a rectangular metallic waveguide
using the flared horn. Fig. 5 shows the measured insertion
loss of the band reject filter with the number of metallic
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strips=40, 2¢=8 mm, §=6 mm, and L=14 mm. The
width of the dielectric waveguide was 25 cm. The insertion
loss of the dielectric waveguide without metallic strips was
about 5 dB over a range of 8.5 to 10.5 GHz. The insertion
loss includes the launching losses at the transmitting and
receiving horns. The dielectric loss for the plane wave in
the infinite polypropylene (tan8=5x10"*[12]) is 0.58—
0.72 dB/m over a range of measured frequencies, which
approximates to the dielectric loss of the actual waveguide
for the great field confinement. Therefore, most of the
insertion loss is the launching loss. The transverse propa-
gation constant in the y direction k,==/width=
7/25[cm™"] is considerably smaller than the wavenumber
in the polypropylene Ve,, k=3n/A. Therefore, the
fabricated filter approximates to the planar structure
shown in Fig. 1. The calculated upper and lower stopband
frequencies are 9.33 and 9.66 GHz, respectively, and the
insertion loss at the center frequency of 9.50 GHz is 23.8
dB. The frequency where the dispersion curve enters into
the forbidden region is 9.99 GHz. The increase of the
insertion loss above the upper stopband frequency results
from the coupling between the surface wave and the leaky
wave. These experimental results agree with calculated
values.

IV. CoNcLUSION

A dielectric waveguide with periodic metallic strips
suitable for millimeter-wave and submillimeter-wave in-
tegrated circuits has been investigated theoretically and
experimentally. Stopband properties are numerically pre-
sented as a function of the spacing and width of metallic
strips and dielectric profile. It is found that there is a
difference in the stopband properties of TM and TE
modes. For the fabrication of band reject filters, this
difference should be taken into account. Experimental
results for the band reject filter agree with theoretical
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values. The analysis presented in this paper can be applied
to other types of periodic structures with metallic strips.
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